IN JUNE, HOUSTONIAN STAMAN OGLIVIE SUSTAINED A SEVERE SPINAL CORD INJURY WHILE RIDING HIS BICYCLE. STAMAN DECIDED TO USE THIS EXPERIENCE FOR THE GOOD OF THOSE WHO CURRENTLY SUFFER FROM A SPINAL INJURY OR WILL SUFFER FROM ONE IN THE FUTURE.

THE STAMAN OGLIVIE FUND FOR SPINAL CORD INJURY RECOVERY, REHABILITATION & RESEARCH was created to assist individuals who have been afflicted by spinal cord injury, brain trauma or neurological disorders that traumatically disrupt their lives. The objective of the Ogilvie Fund is to raise $10 million for the development of new technologies and equipment to increase movement for those with spinal cord injuries and innovative research to restore the function for spinal cord injury through adult stem cell therapy.

“The collaborative effort between the Mischer Neuroscience Institute at Memorial Hermann-Texas Medical Center, TIRR Memorial Hermann, The University of Texas Medical School at Houston, and Rice University School of Engineering offers the best potential to develop leading basic and applied research to assist individuals with serious spinal cord injuries, such as Staman. His injury has proved to be the catalyst to initiate such a program,” commented Walt Mischer, Ogilvie Fund Steering Committee member.

Patients with spinal cord injury often face daunting weeks, months, and even years of rehabilitation after recovering from the initial effects of serious injury or disease. The Staman Ogilvie Fund will drive research initiatives in regenerative medicine and adaptive technologies as well as provide cutting-edge technologies to aid with rehabilitation.

The goals of The Ogilvie Fund are to discover practical solutions and to provide hope for people with physical disabilities. With help from the philanthropic community, The Staman Ogilvie Fund can change the future for those who suffer from spinal cord injuries.

“As you would expect, Staman has been an inspiration to all the healthcare professionals he has encountered,” stated Mischer. “He is intimately involved in this project which will provide certainty of its success.”
Dear Friends of Memorial Hermann:

It has been almost a year since my bicycle accident last June. Over the last several months, a number of my friends have mentioned how healthy and able I look. I am grateful for the encouragement from family, friends and colleagues and am pleased with the progress I have made in recovery and rehabilitation since my injury. Despite that, I should point out a reality - I am completely paralyzed from my chest down. I have no use of any of my fingers. My paralysis means that I need round-the-clock attendants to help me accomplish basic things such as changing position in bed, getting up and dressed in the morning, using a cell phone or picking up and manipulating things.

I do not like any part of this condition and yet, among spinal cord injury patients, I am one of the very, very lucky ones. In the U.S., thousands upon thousands of people per year experience spinal cord injuries -- some in car wrecks, some as a result of disease and some through sports injuries such as mine. The loss in productivity, creativity, and happiness can be, and often is, huge and heartbreaking.

This is why I am determined to help restore patients like me to health, mobility, and life enjoyment. This is why I am not only lending my name, but financially supporting the important work that Dr. Dong Kim and Dr. Gerard Francisco and their teams are introducing here at Memorial Hermann.

Every spinal cord injured person has goals. Central to my goals is regaining the ability to walk comfortably again. My goal is simple and finite and has a timeline which I consider reasonable.

Here it is: I spent my 60th birthday as an inpatient at TIRR. I plan to spend my 70th birthday hiking in a Colorado meadow.

Perhaps I will be walking on bionic legs that will be invented in the not-so-distant future. Perhaps it will be on my own legs whose function will be restored via healing at the cellular level which will be discovered and perfected in a combined research-clinical environment such as we intend at Memorial Hermann.

This program will dramatically advance rehabilitation and recovery options for patients who have suffered a spinal cord injury, like me. I hope you will join me and my family in supporting this important initiative.

With grateful appreciation,

STAMAN
THE STAMAN OGILVIE FUND FOR SPINAL CORD INJURY RECOVERY, REHABILITATION & RESEARCH WILL BENEFIT PATIENTS WHO HAVE BEEN AFFECTED BY SPINAL CORD OR TRAUMATIC BRAIN INJURIES IN THREE WAYS:

1. It will further research toward finding a cure to spinal cord injuries at the Center for Regenerative Medicine at The University of Texas Medical School at Houston. The Center for Regenerative Medicine is exploring the therapeutic applications of adult stem cell therapy and moving that research towards clinical applications with the ultimate goal of reversing damage created by spinal cord injury.

2. It will fund state-of-the-art equipment to be used in rehabilitation. This equipment will help patients regain mobility and range of motion at an accelerated rate.

3. The Staman Ogilvie Fund will support the development of an Adaptive Technology Program at TIRR Memorial Hermann which will utilize robotics, brain-computer interfaces, and NeuroElectro Prosthetic devices to restore or replace functions of the human nervous system when it is damaged.
Research

Research is an investment in promise, potential and hope. There is no current treatment to reverse the cellular destruction associated with devastating injury to the spinal cord or a traumatic brain injury. Regenerative medicine is an emerging field of experimental treatment using stem cells that has shown promise in the management of many diseases, including such injuries.

“Each of us harbors stem cells throughout our lives, even into old age,” states Dong H. Kim, M.D., Director, Mischer Neuroscience Institute. “By directly isolating these stem cells in the patient who will receive treatment, we can manipulate them in the laboratory to make them more effective before reintroducing the cells to the patient. This adult stem cell therapy can proceed without the concerns around embryonic cells.”

To promote the research around adult stem cell therapy, the Center for Regenerative Medicine at The University of Texas Medical School at Houston was established in 2008 by Drs. Dong H. Kim, Charles Cox, and Yong-Jian Geng as a joint effort of the Departments of Neurosurgery, Internal Medicine (Cardiology), Pediatric Surgery, and Neurology and supported by Giuseppe Colasurdo, M.D., Dean of the Medical School. This Center represents a collaborative effort among many scientists engaged in research to develop stem cells as a therapeutic tool. Currently, the Center consists of seven principal investigators who share one common space as well as ideas, equipment, and other resources with the lab leaders, students, and technicians. This environment allows for and fosters constant and natural collaboration.

The overarching objective of the research is to explore the therapeutic potential of cellular therapy for spinal cord and traumatic brain injuries and translate it into clinical applications. Currently, there are not any programs in Houston that have the ability to take their research from basic science all the way through to clinical application in one location. The Mischer Neuroscience Institute is poised to become the first in our city to move this groundbreaking research forward.

Philanthropic funding will allow for the acceleration of our stem cell research effort in the quest for improved treatment options and ultimately reverse the consequences of spinal cord injury.

Rehabilitation

Rehabilitation is essential to regaining function, mobility, independence and quality of life for individuals who have suffered a spinal cord injury. An interdisciplinary team of dedicated, world-class healthcare practitioners from more than a dozen different disciplines designs and delivers rehab treatment at the Mischer Neuroscience Institute and TIRR Memorial Hermann. Resources are needed to expand and enhance this work through technological capabilities and research.

“The fundamentals of world class care treatment following a spinal cord injury include medical recovery, physical rehabilitation, restoration of an individual’s ability to participate as fully as possible in all aspects of life, and cutting edge research that will lead to the capability to regenerate function,” states Carl Josehart, CEO of TIRR Memorial Hermann. “Philanthropic funding for new equipment and continued research will immediately impact patients who are engaged in rehabilitation following a catastrophic spinal cord or brain injury or illness such as stroke.”

For more information on The Stamann Ogilvie Fund, please visit www.ogilviefund.org.

Carl Josehart, CEO of TIRR Memorial Hermann

Dong H. Kim, M.D., Director, Mischer Neuroscience Institute

Memorial Hermann Foundation
Philanthropic funding can expedite the acquisition of this cutting-edge equipment and put it into place to begin immediately helping patients improve flexibility, coordination and mobility following a spinal cord injury, traumatic brain injury or stroke.

Adaptive Technology Program

Helping paralyzed patients regain motion is our ultimate goal. While we continue to invest in research for a cure for spinal cord injury, we also want to offer additional opportunities for our patients to maximize the recovery of functional independence. Recent work has led to exciting breakthroughs, utilizing advanced robotics, computers, and electrode technologies to allow human brains to interface directly with machines.

An exciting new discipline that has emerged in the field of spinal cord injury rehabilitation is NeuroElectro Prosthetic Systems which utilizes robotics and designs devices to restore or replace functions of the human nervous system when it is damaged. The oldest and best-known NeuroElectro Prosthetic device is probably the cardiac pacemaker which helps damaged hearts beat at a healthy rate.

By creating an Adaptive Technology Program, Memorial Hermann hopes to utilize robotics and implantable devices that will help patients rebuild their lives and once again realize independence, self-care and the joy of daily living.

The Adaptive Technology Program would be staffed by a multidisciplinary team of physicians, research scientists, engineers, and nurses as well as graduate and post-doctoral researchers. Through a collaborative approach, this team would focus on helping patients meet their individual goals and get back to the activities of daily life. This team would design and construct robotic exoskeleton devices; implement the use of the robots; provide instruction in the operation of the devices; analyze data, and interpret the results in order to advance the field of NeuroElectro Prosthetic assisted rehabilitation.

"The proposed Adaptive Technology Program will incorporate collaborative efforts of experts from multiple institutions including: the Physical Medicine and Rehabilitation Department at The University of Texas Medical School at Houston; the Rice University School of Engineering; and TIRR Memorial Hermann," states Gerard E. Francisco, M.D., Chief Medical Officer at TIRR Memorial Hermann. "Currently, there are no groups in Houston doing such work."

Delicate equipment is needed for this program to help patients regain abilities and independence as well as to provide the physicians and researcher tools to advance patients' recoveries. Exoskeleton robotic devices assist patients with natural motions that are no longer possible after a traumatic incident affecting the spine and brain. Devices that provide non-invasive brain stimulation apply small currents to the brain to change the membrane potential in nerve cells. This offers new therapeutic options for treating spinal cord injury-related pain as well as motor rehabilitation after stroke, epilepsy, migraine, depression and Parkinson’s disease.

Philanthropic funding would support the recruitment of experts and the launch of a research and clinical treatment program that would benefit patients affected by spinal cord injury as well as other injuries and diseases affecting the neuromuscular system.

For more information on The Stamian Ogilvie Fund, please visit www.ogilviefund.org.
The Creation of The Staman Ogilvie Fund

On February 2, 2010, a reception was held to kick-off fundraising efforts for The Staman Ogilvie Fund for Spinal Cord Injury Recovery, Rehabilitation and Research.

While Staman Ogilvie was still recovering from his injury in Memorial Hermann-Texas Medical Center and beginning rehabilitation at TIRR Memorial Hermann, the vision for The Staman Ogilvie Fund for Spinal Cord Injury Recovery, Rehabilitation and Research was created. Staman’s wife Beverly, brother Buck, friend Walt Mischer and physicians were so inspired by his declaration to take this experience and use it for the better, they began envisioning the establishment of a fund named in Staman’s honor that would change the future for those who have suffered from spinal cord injuries through cutting-edge research and advances in rehabilitation.

Buck Ogilvie and Walt Mischer began plans to form a Steering Committee of Staman’s friends and colleagues to provide leadership. They began reaching out to friends who represented his high school, college and graduate school, as well as church, professional and social circles in which Staman and Beverly are involved. Twelve Steering Committee members were recruited. Each member joined Beverly and Staman Ogilvie in making a personal commitment to the Fund and then began to identify, contact and follow up with those in their constituencies to request support in honor of Staman.

To date, more than $2.5 million has been committed toward the $10 million goal. The Steering Committee is still working hard to raise funds for this important work.

1. Staman Ogilvie & Pete Seale
2. Corby & Barbara Robertson
3. Dan Wolterman & Walt Mischer
4. Polly & Murry Bowden with Beverly Ogilvie
5. Sylvie & Gary Crum with Fenner Weller
6. Cathy & Giorgio Borlenghi
7. John & Laura Beckworth with Beverly Ogilvie
TIRR MEMORIAL HERMANN
A NATIONAL LEADER AMONG REHABILITATION HOSPITALS

Located in the world-renowned Texas Medical Center, TIRR Memorial Hermann changes lives by improving outcomes, offering hope and maximizing independence for people affected by disabling injury or illness. Recognized among the leading rehabilitation hospitals in the country, TIRR serves as a model for interdisciplinary rehabilitation services, patient care, education and research. Our patients have a range of disabilities from complex conditions like brain injury, stroke, spinal cord injury, multiple trauma and amputation, to rehabilitation for conditions including multiple sclerosis, Parkinson’s disease, post-polio syndrome, rheumatoid arthritis and lupus.

TIRR is one of only six rehabilitation hospitals in the nation to achieve designation as a Model System by the National Institute on Disability and Rehabilitation Research (NIDRR) for both our spinal cord injury and traumatic brain injury programs. For 20 consecutive years, U.S. News & World Report has named TIRR to the list of “America’s Best Hospitals,” and currently ranks it number 4 on the list of top rehabilitation hospitals.

Our reputation is based on 50 years of experience in rehabilitation and research, the high caliber of our physician partners and clinical staff and our comprehensive programs and services. We are also recognized for our long-standing commitment to educating patients, families, healthcare professionals, caregivers and the general public about rehabilitation. Extending our knowledge and resources into the community remains a top priority and part of our pledge to make a difference in the lives of those recovering from disabling injury and illness.

MISCHER NEUROSCIENCE INSTITUTE
THE LARGEST & MOST COMPREHENSIVE NEUROSCIENCE PROGRAM IN TEXAS

The Mischer Neuroscience Institute is built on a foundation of long-term collaboration between Memorial Hermann-Texas Medical Center and The University of Texas Medical School at Houston. Fundamental to this collaboration are the departments of Neurology and Neurosurgery that have long been the neuroscience leaders in Houston. Already, the Institute is the largest provider of neuroscience care in South Texas. It is led by acclaimed Harvard researcher and neurosurgeon Dong H. Kim, M.D., and internationally renowned neurologist and stroke expert James C. Grotta, M.D.

The Mischer Neuroscience Institute was the first center in Texas and one of only a few institutions in the country to fully integrate neurology, neurosurgery, and neurorehabilitation in complementary programs offered through distinguished centers of excellence.

All programs at the Institute are staffed by nationally renowned physicians from The University of Texas Medical School at Houston, who are committed to raising the bar – locally, regionally and nationally – with first-rate clinical programs, continued growth and breakthrough research applied daily in the operating room and at the bedside. Their goal, simply stated, is to make Houston the internationally-recognized center for neuroscience care and innovation in the 21st century.

More than 2000 adult and pediatric procedures are performed in our surgical suites annually. Among them are innovative techniques that were once unimaginable: implantations of vagal nerve stimulators that allow patients with epilepsy to lead productive lives, resections of arteriovenous malformations that prevent life-threatening brain hemorrhage and Gamma Knife® radiosurgery that makes treatment of brain tumors safe, quick, effective and painless.

For decades, Houston has led the way in advances in cardiovascular care and cancer treatment and research. Now, neuroscience is the next great frontier. The Mischer Neuroscience Institute will lead the way in a coordinated attack on the major neurological disorders, including Alzheimer’s disease, stroke, epilepsy, Parkinson’s disease, multiple sclerosis, brain tumors and head and spinal cord injuries.
HOW PHILANTHROPIC SUPPORT CAN HELP

A GIFT OF $25,000
…can fund the participation of five patients in a clinical trial to reduce the pain associated with spinal cord injury
…can fund equipment to reduce muscle atrophy or stimulate brain activity in spinal cord injury patients

A GIFT OF $50,000
…can fund a post-doctoral fellow to assist the scientists in neurological recovery or cellular therapy for one year
…can fund a research laboratory onsite at TIRR Memorial Hermann

A GIFT OF $100,000
…can fund a Research Engineer with expertise in robotics and bio-mechanical development for one year
…can fund a Biostatistician to implement clinical trials that lead to promising treatment therapies

A GIFT OF $500,000
…can fund innovative equipment to measure oxygen levels and brain activity in spinal cord injury patients
…can fund a Research Scientist with extensive expertise in non-embryonic stem cell therapy for one year

A GIFT OF $1,000,000
…can fund a Research Team with expertise in brain-computer interface for one year
…can fund a phase I clinical trial to test novel approaches in non-embryonic stem cell therapy

All gifts of $25,000 or more will be recognized on The Staman Ogilvie Fund Donor Plaque to be displayed in the Memorial Hermann Medical Plaza building in the Texas Medical Center.